Code: 20CS3402

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2024

ADVANCED DATA STRUCTURES (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	Compare and contrast separate chaining	L2	CO1	7 M			
		with other collision resolution techniques						
		such as linear probing, quadratic probing,						
		and double hashing.						
	b)	The keys 232, 138, 123, 312, 3, 23, 17 and	L3	CO2	7 M			
		215 are inserted into an initially empty hash						
		table of length 11 using open addressing						
		with hash function $h(k) = k \mod 11$ and						
		Quadratic probing. What is the resultant						
		hash table?						
OR								

2	a)	What role do hash tables play in the	L2	CO1	7 M			
		standard library of programming languages?						
	b)	The keys 22, 38, 13, 12, 3, 23, 7 and 15 are	L3	CO2	7 M			
		inserted into an initially empty hash table of						
		length 10 using open addressing with hash						
		function $h(k) = k \mod 10$ and linear						
		probing. What is the resultant hash table?						
	UNIT-II							
3	a)	Define Priority Queue and explain its	L2	CO1	7 M			
		significance in computer science.						
	b)	Using an example, explain how the merge	L3	CO3	7 M			
		operation works in binomial queues.						
		OR						
4	a)	Interpret the basic operations on a Binary	L3	CO3	7 M			
		Heap: insert and delete with an example.						
	b)	What is a priority queue, and how is it	L2	CO1	7 M			
		different from a regular queue?						
		UNIT-III						
5	a)	Write insertion and searching operations on	L2	CO1	7 M			
		AVL trees.						
	b)	Can you illustrate the structure of a 2-3 tree	L3	CO3	7 M			
		and explain its properties?						
		OR		·				
6	a)	Explain the procedure for deleting an	L2	CO1	7 M			
		element from a 2-3 tree.						

			_					
	b)	Construct red-black tree that results when	L3	CO3	7 M			
		you insert the keys 2 1 4 5 9 3 6 7 in						
		that order into an initially empty tree.						
	UNIT-IV							
7	a)	Explain Dijkstra's algorithm with an	L2	CO1	7 M			
		example.						
	b)	Describe an algorithm for performing	L2	CO3	7 M			
		topological sort on a directed graph.						
	1	OR	I	1				
8	a)	Explain the Bellman-Ford algorithm for	L2	CO1	7 M			
		finding the shortest paths from a single						
		source vertex to all other vertices in a						
		weighted graph with negative edge weights.						
	b)	Using the following directed acyclic graph	L3	CO3	7 M			
		ACCCCEFind the topological sorting for the given graph.						
		0r						
		UNIT-V						
9	a)	Describe the Find operation and its	L2	CO4	7 M			
		significance in disjoint set operations.						
L	·	1	C	1				

	b)	Analyse Rabin-Karp algorithm for the	L4	CO4	7 M
		pattern ABABCABAB in the given string :			
		ABABDABACDABABCABAB.			
	OR				
10	a)	Relate how does the smart Union operation	L4	CO4	7 M
		incorporate path compression?			
	b)	Explain the steps involved in the naive	L2	CO1	7 M
		string-matching algorithm.			